When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nicotinamide adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Nicotinamide_adenine_di...

    Both NAD + and NADH strongly absorb ultraviolet light because of the adenine. For example, peak absorption of NAD + is at a wavelength of 259 nanometers (nm), with an extinction coefficient of 16,900 M −1 cm −1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M ...

  3. Flavin adenine dinucleotide - Wikipedia

    en.wikipedia.org/wiki/Flavin_adenine_dinucleotide

    Reaction of FAD to form FADH 2 Approximate absorption spectrum for FAD. FAD can be reduced to FADH 2 through the addition of 2 H + and 2 e −. FADH 2 can also be oxidized by the loss of 1 H + and 1 e − to form FADH. The FAD form can be recreated through the further loss of 1 H + and 1 e −.

  4. Nicotinamide adenine dinucleotide phosphate - Wikipedia

    en.wikipedia.org/wiki/Nicotinamide_adenine_di...

    Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source').

  5. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    The abundance of a particular nucleic acid sequence (such as a gene) can indicate expression of that gene. Within a single reaction, the amplification of multiple nucleic acid sequences can be monitored simultaneously by using fluorophores (e.g. FAM, VIC, Cy5) with distinguishable excitation and emission spectra; this is known as multiplexed qPCR.

  6. Autofluorescence - Wikipedia

    en.wikipedia.org/wiki/Autofluorescence

    Micrograph of paper autofluorescing under ultraviolet illumination. The individual fibres in this sample are around 10 μm in diameter.. Autofluorescence is the natural fluorescence of biological structures such as mitochondria and lysosomes, in contrast to fluorescence originating from artificially added fluorescent markers (fluorophores).

  7. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    Emission spectrum of a ceramic metal halide lamp. A demonstration of the 589 nm D 2 (left) and 590 nm D 1 (right) emission sodium D lines using a wick with salt water in a flame The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a ...

  8. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    [10] While under standard conditions malate cannot reduce the more electronegative NAD +:NADH couple, in the cell the concentration of oxaloacetate is kept low enough that Malate dehydrogenase can reduce NAD + to NADH during the citric acid cycle. Fumarate + 2 H + + 2 e − → Succinate +0.03 [9] O 2 + 2H + + 2e − → H 2 O 2 +0.30

  9. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    The rule is relevant in understanding the emission spectrum of an excited molecule. Upon absorbing a photon, a molecule in its electronic ground state (denoted S 0, assuming a singlet state) may – depending on the photon wavelength – be excited to any of a set of higher electronic states (denoted S n where n>0).