Search results
Results From The WOW.Com Content Network
However, the limitation is that the low-fidelity data may not be useful for predicting real-world expert (i.e., high-fidelity) performance due to differences between the low-fidelity simulation platform and the real-world context, or between novice and expert performance (e.g., due to training). [8] [9]
Modeling, interoperable simulation and serious games is where serious game approaches (e.g. game engines and engagement methods) are integrated with interoperable simulation. [16] Simulation fidelity is used to describe the accuracy of a simulation and how closely it imitates the real-life counterpart. Fidelity is broadly classified as one of ...
Modeling and simulation are important in research. Representing the real systems either via physical reproductions at smaller scale, or via mathematical models that allow representing the dynamics of the system via simulation, allows exploring system behavior in an articulated way which is often either not possible, or too risky in the real world.
In computational chemistry, a solvent model is a computational method that accounts for the behavior of solvated condensed phases. [1] [2] [3] Solvent models enable simulations and thermodynamic calculations applicable to reactions and processes which take place in solution.
A live simulation, by definition represents the highest fidelity, since it is reality. But a simulation quickly becomes more difficult when it is created from various live, virtual and constructive elements, or sets of simulations with various network protocols, where each simulation consists of a set of live, virtual and constructive elements.
However, direct numerical simulation is a useful tool in fundamental research in turbulence. Using DNS it is possible to perform "numerical experiments", and extract from them information difficult or impossible to obtain in the laboratory, allowing a better understanding of the physics of turbulence.
A computer simulation of high velocity air flow around the Space Shuttle during re-entry A simulation of the Hyper-X scramjet vehicle in operation at Mach-7. The fundamental basis of almost all CFD problems is the Navier–Stokes equations, which define many single-phase (gas or liquid, but not both) fluid flows.
There are also nonintrusive model reduction methods that learn reduced models from data without requiring knowledge about the governing equations and internals of the full, high-fidelity model. Nonintrusive methods learn a low-dimensional approximation space or manifold and the reduced operators that represent the reduced dynamics from data.