Search results
Results From The WOW.Com Content Network
When Fe 2 O 3 ·H 2 O is heated, it loses its water of hydration. Further heating at 1670 K converts Fe 2 O 3 to black Fe 3 O 4 (Fe II Fe III 2 O 4), which is known as the mineral magnetite. Fe(O)OH is soluble in acids, giving [Fe(H 2 O) 6] 3+. In concentrated aqueous alkali, Fe 2 O 3 gives [Fe(OH) 6] 3−. [12]
Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+. The word ferric is derived from the Latin word ferrum, meaning "iron". Although often abbreviated as Fe 3+, that naked ion does not exist
Ferric oxalate, also known as iron(III) oxalate, refers to inorganic compounds with the formula Fe 2 (C 2 O 4) 3 (H 2 O) x but could also refer to salts of [Fe(C 2 O 4) 3] 3-. Fe 2 (C 2 O 4) 3 (H 2 O) x are coordination polymers with varying degrees of hydration.
It may be formed by the salt metathesis reaction of potassium chromate and iron(III) nitrate, which gives potassium nitrate as byproduct. 2 Fe(NO 3) 3 + 3 K 2 CrO 4 → Fe 2 (CrO 4)3 + 6 KNO 3. It also can be formed by the oxidation by air of iron and chromium oxides in a basic environment: 4 Fe 2 O 3 + 6 Cr 2 O 3 + 9 O 2 → 4 Fe 2 (CrO 4) 3
Iron forms various oxide and hydroxide compounds; the most common are iron(II,III) oxide (Fe 3 O 4), and iron(III) oxide (Fe 2 O 3). Iron(II) oxide also exists, though it is unstable at room temperature. Despite their names, they are actually all non-stoichiometric compounds whose compositions may vary. [12]
The reflux system in a typical industrial distillation column. Reflux is a technique involving the condensation of vapors and the return of this condensate to the system from which it originated. It is used in industrial [1] and laboratory [2] distillations. It is also used in chemistry to supply energy to reactions over a long period of time.
Further condensation reactions can occur in strongly acidic solution with the formation of trichromates, Cr 3 O 2− 10, and tetrachromates, Cr 4 O 2− 13. [2] All polyoxyanions of chromium(VI) have structures made up of tetrahedral CrO 4 units sharing corners. [3] The hydrogen chromate ion, HCrO 4 −, is a weak acid: HCrO − 4 ⇌ CrO 2−
The Fe 3+ ion in ferric citrate (as in many iron(III) carboxylates) is reduced by exposure to light, [8] especially blue and ultraviolet, to Fe 2+ (ferrous) ion with concomitant oxidation of the carboxyl group adjacent to the hydroxyl, yielding carbon dioxide and acetonedicarboxylate: 2 Fe 3+ + R 2-C(OH)-CO − 2 → 2 Fe 2+ + R 2-C=O + H + + CO 2