Search results
Results From The WOW.Com Content Network
A classical example of a word equation is the commutation equation =, in which is an unknown and is a constant word. It is well-known [ 4 ] that the solutions of the commutation equation are exactly those morphisms h {\displaystyle h} mapping x {\displaystyle x} to some power of w {\displaystyle w} .
If each unknown appears at most twice, then a word equation is called quadratic; in a quadratic word equation the graph obtained by repeatedly applying Levi's lemma is finite, so it is decidable if a quadratic word equation has a solution. [2] A more general method for solving word equations is Makanin's algorithm. [3] [4]
In the first of these equations the ratio tends toward A n / B n as z tends toward zero. In the second, the ratio tends toward A n / B n as z tends to infinity. This leads us to our first geometric interpretation. If the continued fraction converges, the successive convergents A n / B n are eventually arbitrarily close ...
Big O notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by German mathematicians Paul Bachmann, [1] Edmund Landau, [2] and others, collectively called Bachmann–Landau notation or asymptotic notation.
The right-hand side of this equation minus ( + ) = is the approximation by the trapezoid rule of the integral (! ) − 1 2 ln n ≈ ∫ 1 n ln x d x = n ln n − n + 1 , {\displaystyle \ln(n!)-{\tfrac {1}{2}}\ln n\approx \int _{1}^{n}\ln x\,{\rm {d}}x=n\ln n-n+1,}
To avoid containing closed curves winding around 0, is typically chosen as the complement of a ray or curve in the complex plane going from 0 (inclusive) to infinity in some direction. In this case, the curve is known as a branch cut. For example, the principal branch has a branch cut along the negative real axis.
is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.
Every finite word has a length, which is a natural number. Given a word w of length n, w can be viewed as a function from the set {0,1,...,n−1} → Σ, with the value at i giving the symbol at position i. The infinite words, or ω-words, can likewise be viewed as functions from to Σ.