Search results
Results From The WOW.Com Content Network
The stellation process can be applied to higher dimensional polytopes as well. A stellation diagram of an n -polytope exists in an ( n − 1)-dimensional hyperplane of a given facet . For example, in 4-space, the great grand stellated 120-cell is the final stellation of the regular 4-polytope 120-cell .
Regular convex and star polygons with 3 to 12 vertices, labeled with their Schläfli symbols A regular star polygon is a self-intersecting, equilateral, and equiangular polygon . A regular star polygon is denoted by its Schläfli symbol { p / q }, where p (the number of vertices) and q (the density ) are relatively prime (they share no factors ...
A truncated square is an octagon, t{4}={8}. A quasitruncated square, inverted as {4/3}, is an octagram, t{4/3}={8/3}. [2] The uniform star polyhedron stellated truncated hexahedron, t'{4,3}=t{4/3,3} has octagram faces constructed from the cube in this way. It may be considered for this reason as a three-dimensional analogue of the octagram.
The internal structure of a main sequence star depends upon the mass of the star. In stars with masses of 0.3–1.5 solar masses (M ☉), including the Sun, hydrogen-to-helium fusion occurs primarily via proton–proton chains, which do not establish a steep temperature gradient. Thus, radiation dominates in the inner portion of solar mass stars.
The Sierpiński tetrahedron or tetrix is the three-dimensional analogue of the Sierpiński triangle, formed by repeatedly shrinking a regular tetrahedron to one half its original height, putting together four copies of this tetrahedron with corners touching, and then repeating the process.
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality. There are two general kinds of star polyhedron: Polyhedra which self-intersect in a repetitive way. Concave polyhedra of a particular kind which alternate convex and concave or saddle vertices in a repetitive way.
The Koch snowflake (also known as the Koch curve, Koch star, or Koch island [1] [2]) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" [3] by the Swedish mathematician Helge von Koch.
A container, usually a two- or three-dimensional convex region, possibly of infinite size. Multiple containers may be given depending on the problem. A set of objects, some or all of which must be packed into one or more containers. The set may contain different objects with their sizes specified, or a single object of a fixed dimension that ...