Search results
Results From The WOW.Com Content Network
From the foregoing, you can see that the time domain equations are simply scaled forms of the angle domain equations: is unscaled, ′ is scaled by ω, and ″ is scaled by ω². To convert the angle domain equations to time domain, first replace A with ωt , and then scale for angular velocity as follows: multiply x ′ {\displaystyle x'} by ...
Making a speed mouse trap car involves extracting the most energy you can from the mousetrap spring in a short distance. The lever arm needs to be shorter than the distance car's because the shorter the arm is, the quicker the spring will snap, and thus more torque gets extracted from the spring.
Energy–maneuverability theory is a model of aircraft performance. It was developed by Col. John Boyd, a fighter pilot, and Thomas P. Christie, a mathematician with the United States Air Force, [1] and is useful in describing an aircraft's performance as the total of kinetic and potential energies or aircraft specific energy.
[1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [note 1] The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies ...
A radar speed gun, also known as a radar gun, speed gun, or speed trap gun, is a device used to measure the speed of moving objects. It is commonly used by police to check the speed of moving vehicles while conducting traffic enforcement , and in professional sports to measure speeds such as those of baseball pitches , [ 1 ] tennis serves , and ...
In qualifying at Monza and with its Megatron engine finally exploiting its 640 horses at the full 2.5 bar limit, Warwick and Cheever in the A10B were faster through the start/finish line speed trap at 310 km/h (193 mph), than the McLaren-Hondas which managed 305 km/h (190 mph). Cheever, running less wing than his team mate, was also the fastest ...
Gardner's relation, or Gardner's equation, named after Gerald H. F. Gardner and L. W. Gardner, is an empirically derived equation that relates seismic P-wave velocity to the bulk density of the lithology in which the wave travels. The equation reads:
Instead of just an oscillating field, a permanent field could also be present. In such a situation, the force equation of a charged particle becomes: ¨ = + To solve the above equation, we can make a similar assumption as we did for the case when () =. This gives a generalized expression for the drift motion of the particle: