Search results
Results From The WOW.Com Content Network
The detailed semantics of "the" ternary operator as well as its syntax differs significantly from language to language. A top level distinction from one language to another is whether the expressions permit side effects (as in most procedural languages) and whether the language provides short-circuit evaluation semantics, whereby only the selected expression is evaluated (most standard ...
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement
The symbol of grouping knows as "braces" has two major uses. If two of these symbols are used, one on the left and the mirror image of it on the right, it almost always indicates a set, as in {,,}, the set containing three members, , , and . But if it is used only on the left, it groups two or more simultaneous equations.
Elements that occur more than / times in a multiset of size may be found by a comparison-based algorithm, the Misra–Gries heavy hitters algorithm, in time (). The element distinctness problem is a special case of this problem where k = n {\displaystyle k=n} .
Braces { } are used to identify the elements of a set. For example, {a,b,c} denotes a set of three elements a, b and c. Angle brackets are used in group theory and commutative algebra to specify group presentations, and to denote the subgroup or ideal generated by a collection of elements.
This is a single statement using existential quantification. It is roughly analogous to the informal sentence "Either 0 × 0 = 25 {\displaystyle 0\times 0=25} , or 1 × 1 = 25 {\displaystyle 1\times 1=25} , or 2 × 2 = 25 {\displaystyle 2\times 2=25} , or... and so on," but more precise, because it doesn't need us to infer the meaning of the ...
They offer a cookbook solution for transforming a function consisting only of nested conditionals into a sequence of guarded return (or throw) statements, followed by a single unguarded block, which is intended to contain the code for the common case, while the guarded statements are supposed to deal with the less common ones (or with errors). [13]
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...