Search results
Results From The WOW.Com Content Network
Griffiths is principally known as the author of three highly regarded textbooks for undergraduate physics students: Introduction to Elementary Particles (published in 1987, second edition published 2008), Introduction to Quantum Mechanics (published in 1995, third edition published 2018), and Introduction to Electrodynamics (published in 1981, fifth edition published in 2024).
The field equations of condensed matter physics are remarkably similar to those of high energy particle physics. As a result, much of the theory of particle physics applies to condensed matter physics as well; in particular, there are a selection of field excitations, called quasi-particles, that can be created and explored. These include:
Introduction to Elementary Particles, by David Griffiths, is an introductory textbook that describes an accessible "coherent and unified theoretical structure" of particle physics, appropriate for advanced undergraduate physics students. [1] It was originally published in 1987, and the second revised and enlarged edition was published 2008.
The Ideas of Particle Physics: An Introduction for Scientists. Cambridge University Press. ISBN 978-1-108-72740-2. D.J. Griffiths (1987). Introduction to Elementary Particles. John Wiley & Sons. ISBN 978-0-471-60386-3. W. N. Cottingham and D. A. Greenwood (2023). An Introduction to the Standard Model of Particle Physics. Cambridge University Press.
In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, should not be passable due to the object not having sufficient energy to pass or surmount the barrier.
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons , while the study of combination of protons and neutrons is called nuclear physics .
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons , quarks , gauge bosons and the Higgs boson .
An instanton can be used to calculate the transition probability for a quantum mechanical particle tunneling through a potential barrier. One example of a system with an instanton effect is a particle in a double-well potential. In contrast to a classical particle, there is non-vanishing probability that it crosses a region of potential energy ...