Search results
Results From The WOW.Com Content Network
The structure of the pyridine complex has been determined crystallographically. [2] Adducts with other N-heterocycles have also been characterized similarly. [3] Aqueous chromium(VI) oxide peroxide decomposes in a few seconds, turning green as chromium(III) compounds are formed. [4] 2 CrO(O 2) 2 + 7 H 2 O 2 + 6 H + → 2 Cr 3+ + 10 H 2 O + 7 O 2
Note that these electron configurations are given for neutral atoms in the gas phase, which are not the same as the electron configurations for the same atoms in chemical environments. In many cases, multiple configurations are within a small range of energies and the irregularities shown below do not necessarily have a clear relation to ...
This structure can also be considered to be a distorted hcp lattice with the nearest neighbours in the same plane being approx 16% farther away [18] β-Po: A i: Rhombohedral: R 3 m (No. 166) 1 (rh.) 3 (hex.) Identical symmetry to the α-Hg structure, distinguished based on details about the basis vectors of its unit cell. γ-Se: A8: Hexagonal ...
This list is sorted by boiling point of gases in ascending order, but can be sorted on different values. "sub" and "triple" refer to the sublimation point and the triple point, which are given in the case of a substance that sublimes at 1 atm; "dec" refers to decomposition. "~" means approximately.
CR gas is a lachrymatory agent (LA), exerting its effects through activation of the TRPA1 channel. [ 5 ] [ 6 ] [ 7 ] Its effects are approximately 6 to 10 times more powerful than those of CS gas . CR causes intense skin irritation, in particular around moist areas; blepharospasm , causing temporary blindness; and coughing, gasping for breath ...
The structure of monomeric CrO 3 has been calculated using density functional theory, and is predicted to be pyramidal (point group C 3v) rather than planar (point group D 3h). [11] Chromium trioxide decomposes above 197 °C, liberating oxygen and eventually giving Cr 2 O 3: 4 CrO 3 → 2 Cr 2 O 3 + 3 O 2
Structure of a noble-gas atom caged within a buckminsterfullerene (C 60) molecule. Noble gases can also form endohedral fullerene compounds where the noble gas atom is trapped inside a fullerene molecule. In 1993, it was discovered that when C 60 is exposed to a pressure of around 3 bar of He or Ne, the complexes He@C 60 and Ne@C 60 are formed ...
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...