Search results
Results From The WOW.Com Content Network
An example handcrafted evaluation function for chess might look like the following: c 1 * material + c 2 * mobility + c 3 * king safety + c 4 * center control + c 5 * pawn structure + c 6 * king tropism + ... Each of the terms is a weight multiplied by a difference factor: the value of white's material or positional terms minus black's.
Horner's method evaluates a polynomial using repeated bracketing: + + + + + = + (+ (+ (+ + (+)))). This method reduces the number of multiplications and additions to just Horner's method is so common that a computer instruction "multiply–accumulate operation" has been added to many computer processors, which allow doing the addition and multiplication operations in one combined step.
Gauss–Legendre quadrature is optimal in a very narrow sense for computing integrals of a function f over [−1, 1], since no other quadrature rule integrates all degree 2n − 1 polynomials exactly when using n sample points. However, this measure of accuracy is not generally a very useful one---polynomials are very simple to integrate and ...
Plot of the hypergeometric function 2F1(a,b; c; z) with a=2 and b=3 and c=4 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics , the Gaussian or ordinary hypergeometric function 2 F 1 ( a , b ; c ; z ) is a special function represented by the hypergeometric series , that ...
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral.The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals.
A modular function is a function that is invariant with respect to the modular group, but without the condition that it be holomorphic in the upper half-plane (among other requirements). Instead, modular functions are meromorphic: they are holomorphic on the complement of a set of isolated points, which are poles of the function.
Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function.
A holomorphic elliptic function is constant. [2] This is the original form of Liouville's theorem and can be derived from it. [3] A holomorphic elliptic function is bounded since it takes on all of its values on the fundamental domain which is compact. So it is constant by Liouville's theorem.