Search results
Results From The WOW.Com Content Network
Technetium (99m Tc) sestamibi is a lipophilic cation which, when injected intravenously into a patient, distributes in the myocardium proportionally to the myocardial blood flow. Single photon emission computed tomography imaging of the heart is performed using a gamma camera to detect the gamma rays emitted by the technetium-99m as it decays.
Many radionuclides used for myocardial perfusion imaging, including rubidium-82, technetium-99m and thallium-201 have similar typical effective doses (15-35 mSv). [17] The Cardiac PET tracer nitrogen-13 ammonia, though less widely available, may offer significantly reduced doses (2 mSv).
Technetium-99m (Tc-99m) can be readily detected in the body by medical equipment because it emits 140.5 keV gamma rays (these are about the same wavelength as emitted by conventional X-ray diagnostic equipment), and its half-life for gamma emission is six hours (meaning 94% of it decays to 99 Tc in 24 hours). Besides, it emits virtually no beta ...
The most commonly used intravenous radionuclides are technetium-99m, iodine-123, iodine-131, thallium-201, gallium-67, fluorine-18 fluorodeoxyglucose, and indium-111 labeled leukocytes. [citation needed] The most commonly used gaseous/aerosol radionuclides are xenon-133, krypton-81m, (aerosolised) technetium-99m. [23]
A cardiac specific radiopharmaceutical is administered, e.g., 99m Tc-tetrofosmin (Myoview, GE healthcare), 99m Tc-sestamibi (Cardiolite, Bristol-Myers Squibb) or Thallium-201 chloride. Following this, the heart rate is raised to induce myocardial stress, either by exercise on a treadmill or pharmacologically with adenosine , dobutamine , or ...
The most common isotope used in diagnostic scans is Technetium-99m, used in approximately 85% of all nuclear medicine diagnostic scans worldwide. It is used for diagnoses involving a large range of body parts and diseases such as cancers and neurological problems. [1]
Technetium-99m is a gamma emitter. It is obtained on-site at the imaging center as the soluble pertechnetate which is eluted from a technetium-99m generator , and then either used directly as this soluble salt, or else used to synthesize a number of technetium-99m-based radiopharmaceuticals.
Many radiopharmaceuticals use technetium-99m (Tc-99m) which has many useful properties as a gamma-emitting tracer nuclide. In the book Technetium a total of 31 different radiopharmaceuticals based on Tc-99m are listed for imaging and functional studies of the brain, myocardium, thyroid, lungs, liver, gallbladder, kidneys, skeleton, blood and ...