Search results
Results From The WOW.Com Content Network
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/100 ml), unless shown otherwise.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
IR absorption spectrum of copper(I) chloride. Copper(I) chloride, commonly called cuprous chloride, is the lower chloride of copper, with the formula CuCl. The substance is a white solid sparingly soluble in water, but very soluble in concentrated hydrochloric acid. Impure samples appear green due to the presence of copper(II) chloride (CuCl 2).
Copper(II) chloride is used as a catalyst in a variety of processes that produce chlorine by oxychlorination. The Deacon process takes place at about 400 to 450 °C in the presence of a copper chloride: [8] 4 HCl + O 2 → 2 Cl 2 + 2 H 2 O. Copper(II) chloride catalyzes the chlorination in the production of vinyl chloride and dichloromethane. [8]
Copper(I) bromide: 7.38 (18–20 °C) Copper(I) chloride: 5.99 (18–20 °C) Copper(II) iodate: 6.85 Copper(I) iodide: 11.30 (18–20 °C) Copper(II) oxalate: 7.54 Copper(I) thiocyanate: 10.80 (18 °C) Iron(II) hydroxide: 13.79 (18 °C) Iron(III) hydroxide: 35.96 (18 °C) Lead(II) carbonate: 13.48 (18 °C) Lead(II) fluoride: 7.43 (26.6 °C ...
Copper is a chemical element with the symbol Cu (from Latin: cuprum) and the atomic number of 29. It is easily recognisable, due to its distinct red-orange color.Copper also has a range of different organic and inorganic salts, having varying oxidation states ranging from (0,I) to (III).
Simplified diagram of the Copper–Chlorine cycle. The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius.
Pourbaix diagram for copper in uncomplexed media (anions other than OH − not considered). Ion concentration 0.001 mol/kg water. Temperature 25 °C. Formation of copper(I) oxide is the basis of the Fehling's test and Benedict's test for reducing sugars. These sugars reduce an alkaline solution of a copper(II) salt, giving a bright red ...