Ad
related to: force bitlocker password on boot disk
Search results
Results From The WOW.Com Content Network
Pre-boot authentication can by performed by an add-on of the operating system like Linux Initial ramdisk or Microsoft's boot software of the system partition (or boot partition) or by a variety of full disk encryption (FDE) vendors that can be installed separately to the operating system. Legacy FDE systems tended to rely upon PBA as their ...
Whole disk: Whether the whole physical disk or logical volume can be encrypted, including the partition tables and master boot record. Note that this does not imply that the encrypted disk can be used as the boot disk itself; refer to pre-boot authentication in the features comparison table.
(A volume spans part of a hard disk drive, the whole drive or more than one drive.) When enabled, TPM and BitLocker can ensure the integrity of the trusted boot path (e.g. BIOS and boot sector), in order to prevent most offline physical attacks and boot sector malware. [38]
One issue to address in full disk encryption is that the blocks where the operating system is stored must be decrypted before the OS can boot, meaning that the key has to be available before there is a user interface to ask for a password. Most Full Disk Encryption solutions utilize Pre-Boot Authentication by loading a small, highly secure ...
Authentication on power up of the drive must still take place within the CPU via either a software pre-boot authentication environment (i.e., with a software-based full disk encryption component - hybrid full disk encryption) or with a BIOS password. In additions, some SEDs support IEEE 1667 standard. [2]
A common purpose of cold boot attacks is to circumvent software-based disk encryption. Cold boot attacks when used in conjunction with key finding attacks have been demonstrated to be an effective means of circumventing full disk encryption schemes of various vendors and operating systems, even where a Trusted Platform Module (TPM) secure cryptoprocessor is used.
This key is itself encrypted in some way using a password or pass-phrase known (ideally) only to the user. Thereafter, in order to access the disk's data, the user must supply the password to make the key available to the software. This must be done sometime after each operating system start-up before the encrypted data can be used.
On a Linux system, the boot partition (/boot) may be encrypted if the bootloader itself supports LUKS (e.g. GRUB). This is undertaken to prevent tampering with the Linux kernel. However, the first stage bootloader or an EFI system partition cannot be encrypted (see Full disk encryption#The boot key problem). [14]