When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lie derivative - Wikipedia

    en.wikipedia.org/wiki/Lie_derivative

    valid for any vector fields X and Y and any tensor field T.. Considering vector fields as infinitesimal generators of flows (i.e. one-dimensional groups of diffeomorphisms) on M, the Lie derivative is the differential of the representation of the diffeomorphism group on tensor fields, analogous to Lie algebra representations as infinitesimal representations associated to group representation ...

  3. Covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Covariant_derivative

    The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, , which takes as its inputs: (1) a vector, u, defined at a point P, and (2) a vector field v defined in a neighborhood of P. [7]

  4. Gauge covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Gauge_covariant_derivative

    Consider a generic (possibly non-Abelian) gauge transformation acting on a component field = =.The main examples in field theory have a compact gauge group and we write the symmetry operator as () = where () is an element of the Lie algebra associated with the Lie group of symmetry transformations, and can be expressed in terms of the hermitian generators of the Lie algebra (i.e. up to a ...

  5. Exterior covariant derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_covariant_derivative

    The covariant derivative is such a map for k = 0. The exterior covariant derivatives extends this map to general k. There are several equivalent ways to define this object: [3] Suppose that a vector-valued differential 2-form is regarded as assigning to each p a multilinear map s p: T p M × T p M → E p which is completely anti-symmetric.

  6. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    In fact in the above expression, one can replace the covariant derivative with any torsion free connection ~ or locally, with the coordinate dependent derivative , showing that the Lie derivative is independent of the metric. The covariant derivative is convenient however because it commutes with raising and lowering indices.

  7. Gauge theory - Wikipedia

    en.wikipedia.org/wiki/Gauge_theory

    Connections (gauge connection) define this principal bundle, yielding a covariant derivative ∇ in each associated vector bundle. If a local frame is chosen (a local basis of sections), then this covariant derivative is represented by the connection form A, a Lie algebra-valued 1-form, which is called the gauge potential in physics. This is ...

  8. Riemannian connection on a surface - Wikipedia

    en.wikipedia.org/wiki/Riemannian_connection_on_a...

    The covariant derivative can in turn be recovered from parallel transport. [25] In fact ∇ X Y {\displaystyle \nabla _{X}Y} can be calculated at a point p , by taking a curve c through p with tangent X , using parallel transport to view the restriction of Y to c as a function in the tangent space at p and then taking the derivative.

  9. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    The Lie derivative is another derivative that is covariant under basis transformations. Like the exterior derivative, it does not depend on either a metric tensor or a connection. The Lie derivative of a type (r, s) tensor field T along (the flow of) a contravariant vector field X ρ may be expressed using a coordinate basis as [20]