Ads
related to: pyruvic acid results explained in detail
Search results
Results From The WOW.Com Content Network
Pyruvic acid (CH 3 COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate , the conjugate base , CH 3 COCOO − , is an intermediate in several metabolic pathways throughout the cell.
Pyruvate dehydrogenase is targeted by an autoantigen known as anti-mitochondrial antibodies (AMA), which results in progressive destruction of the small bile ducts of the liver, leading to primary biliary cirrhosis. These antibodies appear to recognize oxidized protein that has resulted from inflammatory immune responses.
Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration, and this complex links the glycolysis metabolic pathway to the citric acid cycle. Pyruvate decarboxylation is also known as the "pyruvate dehydrogenase reaction" because it also involves the oxidation of pyruvate. [2]
Because skeletal muscle is unable to utilize the urea cycle to safely dispose of ammonium ions generated in the breakdown of branch chain amino acids, it must get rid of it in a different way. To do so, the ammonium is combined with free α-ketoglutarate via a transamination reaction in the cell, yielding glutamate and α-keto acid.
This can react as a nucleophile at the ketone carbon of pyruvic acid. [3] During the decarboxylation of pyruvate, the TPP stabilizes the carbanion intermediates as an electrophile by noncovalent bonds. [4] Specifically, the pyridyl nitrogen N1' and the 4'-amino group of TPP are essential for the catalytic function of the enzyme-TPP complex. [5]
Without oxygen, pyruvate (pyruvic acid) is not metabolized by cellular respiration but undergoes a process of fermentation. The pyruvate is not transported into the mitochondrion but remains in the cytoplasm, where it is converted to waste products that may be removed from the cell. This serves the purpose of oxidizing the electron carriers so ...
The compound exists in equilibrium with its (E)- and (Z)-enol tautomers.[citation needed] It is a product from the oxidative deamination of phenylalanine.When the activity of the enzyme phenylalanine hydroxylase is reduced, the amino acid phenylalanine accumulates and gets converted into phenylpyruvic acid (phenylpyruvate), which leads to 'Phenylketonuria (PKU)' instead of 'tyrosine' which is ...
This results in the intermediate shown at lower left in the figure, which has the form of a hemi thioketal. In the next step, as TPP departs as a leaving group, taking electrons from the bond to the hydroxyethyl group with it, the hydroxyethyl recruits the electrons from the O-H bond, assisted by a conveniently located enzyme-derived base to ...