Ad
related to: field functions in math examples
Search results
Results From The WOW.Com Content Network
In mathematics, a field is a set on which addition, ... For example, the field Q(i) ... The function field is invariant under isomorphism and birational equivalence ...
The algebraic function fields over k form a category; the morphisms from function field K to L are the ring homomorphisms f : K → L with f(a) = a for all a in k. All these morphisms are injective. If K is a function field over k of n variables, and L is a function field in m variables, and n > m, then there are no morphisms from K to L.
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
Mathematically, a scalar field on a region U is a real or complex-valued function or distribution on U. [1] [2] The region U may be a set in some Euclidean space, Minkowski space, or more generally a subset of a manifold, and it is typical in mathematics to impose further conditions on the field, such that it be continuous or often continuously differentiable to some order.
For example, if F is a function field of n variables over a finite field of characteristic p > 0, then its imperfect degree is p n. [1] Algebraically closed field A field F is algebraically closed if every polynomial in F[x] has a root in F; equivalently: every polynomial in F[x] is a product of linear factors. Algebraic closure
By starting with the field of rational functions, two special types of transcendental extensions (the logarithm and the exponential) can be added to the field building a tower containing elementary functions. A differential field F is a field F 0 (rational functions over the rationals Q for example) together with a derivation map u → ∂u.
Given a field K, we can consider the field K(X) of all rational functions in the variable X with coefficients in K; the elements of K(X) are fractions of two polynomials over K, and indeed K(X) is the field of fractions of the polynomial ring K[X]. This field of rational functions is an extension field of K. This extension is infinite.
Functional programming is the programming paradigm consisting of building programs by using only subroutines that behave like mathematical functions. For example, if_then_else is a function that takes three functions as arguments, and, depending on the result of the first function (true or false), returns the result of either the second or the ...