Search results
Results From The WOW.Com Content Network
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the ...
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle.Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola.
cos x−1 = cos(x)−1 = −(1−cos(x)) = −ver(x) or negative versine of x, the additive inverse (or negation) of an old trigonometric function; cos −1 y = cos −1 (y), sometimes interpreted as arccos(y) or arccosine of y, the compositional inverse of the trigonometric function cosine (see below for ambiguity)
The inverse of addition is subtraction, and the inverse of multiplication is division. Similarly, a logarithm is the inverse operation of exponentiation . Exponentiation is when a number b , the base , is raised to a certain power y , the exponent , to give a value x ; this is denoted b y = x . {\displaystyle b^{y}=x.}
If an infinite number of infinitely long, equidistant, parallel, coplanar, straight wires are kept at equal potentials with alternating signs, the potential-flux distribution in a cross-sectional plane perpendicular to the wires is the complex Gudermannian function. [26]
The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice.
The most common definition of toroidal coordinates (,,) is = = = together with () = ().The coordinate of a point equals the angle and the coordinate equals the natural logarithm of the ratio of the distances and to opposite sides of the focal ring