Search results
Results From The WOW.Com Content Network
Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana (singular: granum). Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment.
Chloroplasts, containing thylakoids, visible in the cells of Rosulabryum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.
Within the envelope membranes, in the region called the stroma, there is a system of interconnecting flattened membrane compartments, called the thylakoids.The thylakoid membrane is quite similar in lipid composition to the inner envelope membrane, containing 78% galactolipids, 15.5% phospholipids and 6.5% sulfolipids in spinach chloroplasts. [3]
Chloroplasts are characterized by a system of membranes embedded in a hydrophobic proteinaceous matrix, or stroma. The basic unit of the membrane system is a flattened single vesicle called the thylakoid; thylakoids stack into grana. All the thylakoids of a granum are connected with each other, and the grana are connected by intergranal ...
The chloroplasts of the bundle sheath cells convert this CO 2 into carbohydrates by the conventional C 3 pathway. There is large variability in the biochemical features of C4 assimilation, and it is generally grouped in three subtypes, differentiated by the main enzyme used for decarboxylation ( NADP-malic enzyme , NADP-ME; NAD-malic enzyme ...
Chlorophyll molecules are arranged in and around photosystems that are embedded in the thylakoid membranes of chloroplasts. [17] In these complexes, chlorophyll serves three functions: The function of the vast majority of chlorophyll (up to several hundred molecules per photosystem) is to absorb light.
The morphological similarity between chloroplasts and cyanobacteria was first reported by German botanist Andreas Franz Wilhelm Schimper in the 19th century [197] Chloroplasts are only found in plants and algae, [198] thus paving the way for Russian biologist Konstantin Mereschkowski to suggest in 1905 the symbiogenic origin of the plastid. [199]
Eukaryotic cells contain organelles including mitochondria, which provide energy for cell functions; chloroplasts, which create sugars by photosynthesis, in plants; and ribosomes, which synthesise proteins. Cells were discovered by Robert Hooke in 1665, who named them after their resemblance to cells inhabited by Christian monks in a monastery.