Search results
Results From The WOW.Com Content Network
In statistics, the autocorrelation of a real or complex random process is the Pearson correlation between values of the process at different times, as a function of the two times or of the time lag.
The partial autocorrelation of an AR(p) process becomes zero at lag p + 1 and greater, so we examine the sample partial autocorrelation function to see if there is evidence of a departure from zero. This is usually determined by placing a 95% confidence interval on the sample partial autocorrelation plot (most software programs that generate ...
A correlation function is a function that gives the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables. [1] If one considers the correlation function between random variables representing the same quantity measured at two different points, then this is often referred to as an ...
Partial autocorrelation function of Lake Huron's depth with confidence interval (in blue, plotted around 0). In time series analysis, the partial autocorrelation function (PACF) gives the partial correlation of a stationary time series with its own lagged values, regressed the values of the time series at all shorter lags.
For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram . The correlogram is a commonly used tool for checking randomness in a data set .
Correlation functions between the same random variable are autocorrelation functions. However, in statistical mechanics, not all correlation functions are autocorrelation functions. For example, in multicomponent condensed phases, the pair correlation function between different elements is often of interest.
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
Example of a two-dimensional correlation spectrum. Open circles in this simplified view represent positive peaks, while discs represent negative peaks It is not always possible to unequivocally determine the direction of intensity change, such as is for example the case for highly overlapping signals next to each other and of which the ...