Search results
Results From The WOW.Com Content Network
A system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, [1] in contrast to orthogonal coordinates.. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor ...
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations .
b) Non–orthogonal coordinate. Figure 3 shows non-orthogonal grids. The figure shows the grid lines do not intersect at 90-degree angle. In both these cases the domain boundaries coincide with the coordinate lines; therefore all the geometrical details can be incorporated. Grids can be refined easily to capture important flow features.
Figure 2. Xcas can solve equations, calculate derivatives, antiderivatives and more. Figure 3. Xcas can solve differential equations. Xcas is a user interface to Giac, which is an open source [2] computer algebra system (CAS) for Windows, macOS and Linux among many other platforms. Xcas is written in C++. [3]
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation" [3]) is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, group theory, differentiable manifolds, numerical analysis, number theory, calculus and statistics.
For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.
TK Solver has three ways of solving systems of equations. The "direct solver" solves a system algebraically by the principle of consecutive substitution. When multiple rules contain multiple unknowns, the program can trigger an iterative solver which uses the Newton–Raphson algorithm to successively approximate based on initial guesses for ...
Equations with boundary conditions that follow coordinate surfaces for a particular curvilinear coordinate system may be easier to solve in that system. While one might describe the motion of a particle in a rectangular box using Cartesian coordinates, it is easier to describe the motion in a sphere with spherical coordinates.