When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    1.3 Operations on two known limits. 1.4 Limits involving derivatives or infinitesimal changes. 1.5 Inequalities. ... A function, () , is said to be ...

  4. atan2 - Wikipedia

    en.wikipedia.org/wiki/Atan2

    atan2(y, x) returns the angle θ between the positive x-axis and the ray from the origin to the point (x, y), confined to (−π, π].Graph of ⁡ (,) over /. In computing and mathematics, the function atan2 is the 2-argument arctangent.

  5. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    Instead of taking limit as (x, y) → (p, q), we may consider taking the limit of just one variable, say, x → p, to obtain a single-variable function of y, namely :. In fact, this limiting process can be done in two distinct ways. The first one is called pointwise limit.

  6. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges ...

  7. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    Plot of the Rosenbrock function of two variables. Here a = 1 , b = 100 {\displaystyle a=1,b=100} , and the minimum value of zero is at ( 1 , 1 ) {\displaystyle (1,1)} . In mathematical optimization , the Rosenbrock function is a non- convex function , introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for ...

  8. Subharmonic function - Wikipedia

    en.wikipedia.org/wiki/Subharmonic_function

    If the graph of a convex function and a line intersect at two points, then the graph of the convex function is below the line between those points. In the same way, if the values of a subharmonic function are no larger than the values of a harmonic function on the boundary of a ball , then the values of the subharmonic function are no larger ...

  9. Indicator function - Wikipedia

    en.wikipedia.org/wiki/Indicator_function

    What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is 0 when the function R is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, [2]: 228 the bounded-[2]: 228 and unbounded-[2]: 279 ff mu operators and the CASE function.