When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Job embeddedness - Wikipedia

    en.wikipedia.org/wiki/Job_embeddedness

    Job embeddedness was first introduced by Mitchell and colleagues [1] in an effort to improve traditional employee turnover models. According to these models, factors such as job satisfaction and organizational commitment and the individual's perception of job alternatives together predict an employee's intent to leave and subsequently, turnover (e.g., [4] [5] [6] [7]).

  3. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The use of deep learning for knowledge graph embedding has shown good predictive performance even if they are more expensive in the training phase, data-hungry, and often required a pre-trained embedding representation of knowledge graph coming from a different embedding model. [1] [5]

  4. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  5. Foundation model - Wikipedia

    en.wikipedia.org/wiki/Foundation_model

    Foundation models are built by optimizing a training objective(s), which is a mathematical function that determines how model parameters are updated based on model predictions on training data. [34] Language models are often trained with a next-tokens prediction objective, which refers to the extent at which the model is able to predict the ...

  6. Multimodal learning - Wikipedia

    en.wikipedia.org/wiki/Multimodal_learning

    Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...

  7. ELMo - Wikipedia

    en.wikipedia.org/wiki/ELMo

    ELMo (embeddings from language model) is a word embedding method for representing a sequence of words as a corresponding sequence of vectors. [1] It was created by researchers at the Allen Institute for Artificial Intelligence , [ 2 ] and University of Washington and first released in February, 2018.

  8. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    models, also with Git-based version control; datasets, mainly in text, images, and audio; web applications ("spaces" and "widgets"), intended for small-scale demos of machine learning applications. There are numerous pre-trained models that support common tasks in different modalities, such as:

  9. Retrieval-augmented generation - Wikipedia

    en.wikipedia.org/wiki/Retrieval-augmented_generation

    Retrieval-Augmented Generation (RAG) is a technique that grants generative artificial intelligence models information retrieval capabilities. It modifies interactions with a large language model (LLM) so that the model responds to user queries with reference to a specified set of documents, using this information to augment information drawn from its own vast, static training data.