Search results
Results From The WOW.Com Content Network
Substrate-level phosphorylation exemplified with the conversion of ADP to ATP. Substrate-level phosphorylation is a metabolism reaction that results in the production of ATP or GTP supported by the energy released from another high-energy bond that leads to phosphorylation of ADP or GDP to ATP or GTP (note that the reaction catalyzed by creatine kinase is not considered as "substrate-level ...
It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. [1] Pyruvate kinase was inappropriately named (inconsistently with a conventional kinase ) before it was recognized that it did not directly catalyze phosphorylation of pyruvate ...
Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) is the carboxylic acid derived from the enol of pyruvate and phosphate. It exists as an anion. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/mol) in organisms, and is involved in glycolysis and gluconeogenesis.
PEP (phosphoenol pyruvate) group translocation, also known as the phosphotransferase system or PTS, is a distinct method used by bacteria for sugar uptake where the source of energy is from phosphoenolpyruvate (PEP). It is known to be a multicomponent system that always involves enzymes of the plasma membrane and those in the cytoplasm.
The three states of pyruvate, phosphate dikinase (unphosphorylated, monophosphorylated, and diphosphorylated) as it converts pyruvate to phosphoenolpyruvate (PEP). P i = phosphate group. E-His = histidine residue of the enzyme. Pyruvate, phosphate dikinase, or PPDK (EC 2.7.9.1) is an enzyme in the family of transferases that catalyzes the ...
A catabolic pathway is a series of reactions that bring about a net release of energy in the form of a high energy phosphate bond formed with the energy carriers adenosine diphosphate (ADP) and guanosine diphosphate (GDP) to produce adenosine triphosphate (ATP) and guanosine triphosphate (GTP), respectively.
In enzymology, a pyruvate, water dikinase (EC 2.7.9.2) is an enzyme that catalyzes the chemical reaction. ATP + pyruvate + H 2 O AMP + phosphoenolpyruvate + phosphate. The 3 substrates of this enzyme are ATP, pyruvate, and H 2 O, whereas its 3 products are AMP, phosphoenolpyruvate, and phosphate.
Due to the low energy yield of the ED pathway, anaerobic bacteria seem to mainly use glycolysis while aerobic and facultative anaerobes are more likely to have the ED pathway. This is thought to be due to the fact that aerobic and facultative anaerobes have other non-glycolytic pathways for creating ATP such as oxidative phosphorylation .