When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    In addition to performing linear classification, SVMs can efficiently perform non-linear classification using the kernel trick, representing the data only through a set of pairwise similarity comparisons between the original data points using a kernel function, which transforms them into coordinates in a higher-dimensional feature space.

  3. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    In 2021, a very simple NN architecture combining two deep MLPs with skip connections and layer normalizations was designed and called MLP-Mixer; its realizations featuring 19 to 431 millions of parameters were shown to be comparable to vision transformers of similar size on ImageNet and similar image classification tasks. [25]

  4. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    The set of images in the MNIST database was created in 1994. Previously, NIST released two datasets: Special Database 1 (NIST Test Data I, or SD-1); and Special Database 3 (or SD-2).

  5. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    If we were to write a logical program to perform the same task, each positive example shows that one of the coordinates is the right one, and each negative example shows that its complement is a positive example. By collecting all the known positive examples, we eventually eliminate all but one coordinate, at which point the dataset is learned ...

  6. Kernel perceptron - Wikipedia

    en.wikipedia.org/wiki/Kernel_perceptron

    The forgetron variant of the kernel perceptron was suggested to deal with this problem. It maintains an active set of examples with non-zero α i, removing ("forgetting") examples from the active set when it exceeds a pre-determined budget and "shrinking" (lowering the weight of) old examples as new ones are promoted to non-zero α i. [5]

  7. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    Recognizing simple digit images is the most classic application of LeNet as it was created because of that. Yann LeCun et al. created LeNet-1 in 1989. The paper Backpropagation Applied to Handwritten Zip Code Recognition [ 4 ] demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network.

  8. MUSIC (algorithm) - Wikipedia

    en.wikipedia.org/wiki/MUSIC_(algorithm)

    The resulting algorithm was called MUSIC (MUltiple SIgnal Classification) and has been widely studied. In a detailed evaluation based on thousands of simulations, the Massachusetts Institute of Technology's Lincoln Laboratory concluded in 1998 that, among currently accepted high-resolution algorithms, MUSIC was the most promising and a leading ...

  9. Nonlinear dimensionality reduction - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_dimensionality...

    Nonlinear PCA (NLPCA) uses backpropagation to train a multi-layer perceptron (MLP) to fit to a manifold. [37] Unlike typical MLP training, which only updates the weights, NLPCA updates both the weights and the inputs. That is, both the weights and inputs are treated as latent values.