When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    foot per hour per second: fph/s ≡ 1 ft/(h⋅s) = 8.4 6 × 10 −5 m/s 2: foot per minute per second: fpm/s ≡ 1 ft/(min⋅s) = 5.08 × 10 −3 m/s 2: foot per second squared: fps 2: ≡ 1 ft/s 2 = 3.048 × 10 −1 m/s 2: gal; galileo: Gal ≡ 1 cm/s 2 = 10 −2 m/s 2: inch per minute per second: ipm/s ≡ 1 in/(min⋅s) = 4.2 3 × 10 −4 m ...

  3. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.

  4. Conversion of units - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_units

    For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below: = . Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the ...

  5. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    Saturn V Moon rocket just after launch and the gravity of Neptune where atmospheric pressure is about Earth's 1.14 g: Bugatti Veyron from 0 to 100 km/h in 2.4 s 1.55 g [b] Gravitron amusement ride 2.5–3 g: Gravity of Jupiter at its mid-latitudes and where atmospheric pressure is about Earth's 2.528 g: Uninhibited sneeze after sniffing ground ...

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 (metres per second squared, which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet per second per second") approximately. A coherent set of units for g, d, t and v is essential.

  7. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as g n, g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g 0, or simply g (which is also used for the variable local value).

  8. Help:Convert units - Wikipedia

    en.wikipedia.org/wiki/Help:Convert_units

    kilometer per liter mpgimp: mpg ‑imp: mile per imperial gallon: mpgus: mpg ‑US: mile per US gallon: mile per U.S. gallon L/km: L/km: litre per kilometre: liter per kilometer L/100 km: L/100 km: litre per 100 kilometres: liter per 100 kilometers

  9. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2). This value was established by the third General Conference on Weights and Measures (1901, CR 70) and used to define the standard weight of an object as the product of its mass and this nominal acceleration .