Search results
Results From The WOW.Com Content Network
The parabola opens upward. It is shown elsewhere in this article that the equation of the parabola is 4fy = x 2, where f is the focal length. At the positive x end of the chord, x = c / 2 and y = d. Since this point is on the parabola, these coordinates must satisfy the equation above.
From the point of view of projective geometry, an elliptic paraboloid is an ellipsoid that is tangent to the plane at infinity. Plane sections. The plane sections of an elliptic paraboloid can be: a parabola, if the plane is parallel to the axis, a point, if the plane is a tangent plane. an ellipse or empty, otherwise.
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
Intersecting with the line at infinity, each conic section has two points at infinity. If these points are real, the curve is a hyperbola; if they are imaginary conjugates, it is an ellipse; if there is only one double point, it is a parabola. If the points at infinity are the cyclic points [1: i: 0] and [1: –i: 0], the conic section is a circle.
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The universal parabolic constant is the red length divided by the green length. The universal parabolic constant is a mathematical constant.. It is defined as the ratio, for any parabola, of the arc length of the parabolic segment formed by the latus rectum to the focal parameter.
In mathematics, a parametric equation expresses several quantities, such as the coordinates of a point, as functions of one or several variables called parameters. [ 1 ] In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not ...
The point (,) is the vertex of the parabola. Pencil of confocal parabolas From the definition of a parabola , for any point P {\displaystyle P} not on the x -axis, there is a unique parabola with focus at the origin opening to the right and a unique parabola with focus at the origin opening to the left, intersecting orthogonally at the point P ...