When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    The activation energy (E a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2] Activation energy can be thought of as the magnitude of the potential barrier (sometimes called the energy barrier) separating minima of the potential energy surface pertaining to the initial and final thermodynamic ...

  3. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  4. Entropy of activation - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_activation

    Entropy of activation determines the preexponential factor A of the Arrhenius equation for temperature dependence of reaction rates. The relationship depends on the molecularity of the reaction: for reactions in solution and unimolecular gas reactions A = (ek B T/h) exp(ΔS ‡ /R), while for bimolecular gas reactions A = (e 2 k B T/h) (RT/p ...

  5. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    This energy barrier is known as activation energy (∆G ≠) and the rate of reaction is dependent on the height of this barrier. A low energy barrier corresponds to a fast reaction and high energy barrier corresponds to a slow reaction. A reaction is in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction.

  6. Transition state theory - Wikipedia

    en.wikipedia.org/wiki/Transition_state_theory

    At 298 K, a reaction with ΔG ‡ = 23 kcal/mol has a rate constant of k ≈ 8.4 × 10 −5 s −1 and a half life of t 1/2 ≈ 2.3 hours, figures that are often rounded to k ~ 10 −4 s −1 and t 1/2 ~ 2 h. Thus, a free energy of activation of this magnitude corresponds to a typical reaction that proceeds to completion overnight at room ...

  7. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    In a multistep reaction, the rate-determining step does not necessarily correspond to the highest Gibbs energy on the reaction coordinate diagram. [ 8 ] [ 6 ] If there is a reaction intermediate whose energy is lower than the initial reactants, then the activation energy needed to pass through any subsequent transition state depends on the ...

  8. Eyring equation - Wikipedia

    en.wikipedia.org/wiki/Eyring_equation

    ‡ = entropy of activation; If one assumes constant enthalpy of activation, constant entropy of activation, and constant transmission coefficient, this equation can be used as follows: A certain chemical reaction is performed at different temperatures and the reaction rate is determined.

  9. Water–gas shift reaction - Wikipedia

    en.wikipedia.org/wiki/Water–gas_shift_reaction

    In the conversion of carbon dioxide to useful materials, the water–gas shift reaction is used to produce carbon monoxide from hydrogen and carbon dioxide. This is sometimes called the reverse water–gas shift reaction. [19] Water gas is defined as a fuel gas consisting mainly of carbon monoxide (CO) and hydrogen (H 2).