Search results
Results From The WOW.Com Content Network
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.
A definition of "matter" based on its physical and chemical structure is: matter is made up of atoms. [16] Such atomic matter is also sometimes termed ordinary matter. As an example, deoxyribonucleic acid molecules (DNA) are matter under this definition because they are made of atoms.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Addition and multiplication are prototypical examples of operations that combine two elements of a set to produce a third element of the same set. These operations obey several algebraic laws. For example, a + (b + c) = (a + b) + c and a(bc) = (ab)c are associative laws, and a + b = b + a and ab = ba are commutative laws. Many systems studied ...
In mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e., the whole has the same shape as one or more of the parts). Many objects in the real world, such as coastlines , are statistically self-similar: parts of them show the same statistical properties at many scales. [ 2 ]
A structure on a set, or more generally a type, consists of additional mathematical objects that in some manner attach (or are related) to the set, making it easier to visualize or work with, or endowing the collection with meaning or significance.
In the former case, equivalence of two definitions means that a mathematical object (for example, geometric body) satisfies one definition if and only if it satisfies the other definition. In the latter case, the meaning of equivalence (between two definitions of a structure) is more complicated, since a structure is more abstract than an object.
Mathematical constructivism asserts that it is necessary to find (or "construct") a specific example of a mathematical object in order to prove that an example exists. Contrastingly, in classical mathematics, one can prove the existence of a mathematical object without "finding" that object explicitly, by assuming its non-existence and then ...