Search results
Results From The WOW.Com Content Network
The odd greedy algorithm cannot terminate when given a fraction with an even denominator, because these fractions do not have finite representations with odd denominators. Therefore, in this case, it produces an infinite series expansion of its input. For instance Sylvester's sequence can be viewed as generated by the odd greedy expansion of 1/2.
Continued fractions can also be applied to problems in number theory, and are especially useful in the study of Diophantine equations. In the late eighteenth century Lagrange used continued fractions to construct the general solution of Pell's equation, thus answering a question that had fascinated mathematicians for more than a thousand years. [9]
In mathematics, reduction refers to the rewriting of an expression into a simpler form. For example, the process of rewriting a fraction into one with the smallest whole-number denominator possible (while keeping the numerator a whole number) is called "reducing a fraction".
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1]
For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a × b = a × c , then the multiplicative term a can be canceled out if a ≠0, resulting in the equivalent expression b = c ; this is equivalent to dividing through by a .
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
One may also round half to odd, a similar tie-breaking rule to round half to even. In this approach, if the fractional part of x is 0.5, then y is the odd integer nearest to x. Thus, for example, 23.5 becomes 23, as does 22.5; while −23.5 becomes −23, as does −22.5.