Search results
Results From The WOW.Com Content Network
Although the thermal neutron fission cross section (σ f) of the resulting 233 U is comparable to 235 U and 239 Pu, it has a much lower capture cross section (σ γ) than the latter two fissile isotopes, providing fewer non-fissile neutron absorptions and improved neutron economy. The ratio of neutrons released per neutron absorbed (η) in 233 U
In ethology, fission–fusion society is one in which the size and composition of the social group change as time passes and animals move throughout the environment; animals merge into a group (fusion)—e.g. sleeping in one place—or split (fission)—e.g. foraging in small groups during the day.
The fissile isotope uranium-235 fuels most nuclear reactors.When 235 U absorbs a thermal neutron, one of two processes can occur.About 85.5% of the time, it will fission; about 14.5% of the time, it will not fission, instead emitting gamma radiation and yielding 236 U. [1] [2] Thus, the yield of 236 U per 235 U+n reaction is about 14.5%, and the yield of fission products is about 85.5%.
Its (fission) nuclear cross section for slow thermal neutron is about 504.81 barns. For fast neutrons it is on the order of 1 barn. At thermal energy levels, about 5 of 6 neutron absorptions result in fission and 1 of 6 result in neutron capture forming uranium-236. [31] The fission-to-capture ratio improves for faster neutrons.
A less moderated neutron energy spectrum does worsen the capture/fission ratio for 235 U and especially 239 Pu, meaning that more fissile nuclei fail to fission on neutron absorption and instead capture the neutron to become a heavier nonfissile isotope, wasting one or more neutrons and increasing accumulation of heavy transuranic actinides ...
It so happens that the neutron cross-section of many actinides decreases with increasing neutron energy, but the ratio of fission to simple activation (neutron capture) changes in favour of fission as the neutron energy increases. Thus with a sufficiently high neutron energy, it should be possible to destroy even curium without the generation ...
Concentration/Density: Neutron reactions leading to scattering, capture or fission reactions are more likely to occur in dense materials; conversely, neutrons are more likely to escape (leak) from low density materials. Moderation: Neutrons resulting from fission are typically fast (high energy). These fast neutrons do not cause fission as ...
In a nuclear reactor, the neutron population at any instant is a function of the rate of neutron production (due to fission processes) and the rate of neutron losses (due to non-fission absorption mechanisms and leakage from the system). When a reactor's neutron population remains steady from one generation to the next (creating as many new ...