When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    Glycolysis is the metabolic pathway that converts glucose (C 6 H 12 O 6) into pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). [1]

  3. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Anaerobic system – This system predominates in supplying energy for intense exercise lasting less than two minutes. It is also known as the glycolytic system. An example of an activity of the intensity and duration that this system works under would be a 400 m sprint. Aerobic system – This is the long-duration energy system.

  4. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    The anaerobic glycolysis (lactic acid) system is dominant from about 10–30 seconds during a maximal effort. It produces 2 ATP molecules per glucose molecule, [3] or about 5% of glucose's energy potential (38 ATP molecules). [4] [5] The speed at which ATP is produced is about 100 times that of oxidative phosphorylation. [1]

  5. Anaerobic exercise - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_exercise

    The lactic anaerobic system, which features anaerobic glycolysis. [12] High energy phosphates are stored in limited quantities within muscle cells. Anaerobic glycolysis exclusively uses glucose (and glycogen) as a fuel in the absence of oxygen, or more specifically, when ATP is needed at rates that exceed those provided by aerobic metabolism.

  6. Bioenergetics - Wikipedia

    en.wikipedia.org/wiki/Bioenergetics

    Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...

  7. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle.

  8. Carbohydrate catabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_catabolism

    Oxidative phosphorylation contributes the majority of the ATP produced, compared to glycolysis and the Krebs cycle. While the ATP count is glycolysis and the Krebs cycle is two ATP molecules, the electron transport chain contributes, at most, twenty-eight ATP molecules. A contributing factor is due to the energy potentials of NADH and FADH 2.

  9. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    In some tissues and organisms, glycolysis is the sole method of energy production. [2] This pathway is common to both anaerobic and aerobic respiration. [1] Glycolysis consists of ten steps, split into two phases. [2] During the first phase, it requires the breakdown of two ATP molecules. [1]