Search results
Results From The WOW.Com Content Network
The lateral surface area of a right circular cone is = where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following:
English: This file illustrates a cone and its main caracteristics. Labeled "r" is the radius of the circular base. Labeled "h" is the height, from center of base to apex, of the cone. Labeled "c", is the slant height of the cone. Labeled "θ" is the angle between the height and the slant height.
For a circular bicone with radius R and height center-to-top H, the formula for volume becomes V = 2 3 π R 2 H . {\displaystyle V={\frac {2}{3}}\pi R^{2}H.} For a right circular cone, the surface area is
In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation ... Surface area, radius, and slant height
A frustum's axis is that of the original cone or pyramid. A frustum is circular if it has circular bases; it is right if the axis is perpendicular to both bases, and oblique otherwise. The height of a frustum is the perpendicular distance between the planes of the two bases.
If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...
That can also be rewritten as + [32] or (+) where r is the radius and l is the slant height of the cone. π r 2 {\displaystyle \pi r^{2}} is the base area while π r l {\displaystyle \pi rl} is the lateral surface area of the cone.
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.