When.com Web Search

  1. Ads

    related to: isosceles triangle worksheet pdf printable forms template

Search results

  1. Results From The WOW.Com Content Network
  2. Template : Did you know nominations/Isosceles triangle

    en.wikipedia.org/.../Isosceles_triangle

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  3. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  4. Isosceles set - Wikipedia

    en.wikipedia.org/wiki/Isosceles_set

    The unique 6-point isosceles set in the plane. The shaded regions show four of the 20 isosceles triangles formed by triples of these points. In discrete geometry, an isosceles set is a set of points with the property that every three of them form an isosceles triangle.

  5. Triakis tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Triakis_tetrahedron

    A triakis tetrahedron with equilateral triangle faces represents a net of the four-dimensional regular polytope known as the 5-cell. If the triangles are right-angled isosceles, the faces will be coplanar and form a cubic volume. This can be seen by adding the 6 edges of tetrahedron inside of a cube.

  6. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    Now, triangles ABC and BCD are isosceles, thus (by Fact 3 above) each has two equal angles. Hypothesis: Given AD is a straight line, and AB, BC, and CD all have equal length, Conclusion: angle b = ⁠ a / 3 ⁠. Proof: From Fact 1) above, + = °. Looking at triangle BCD, from Fact 2) + = °.

  7. Triakis icosahedron - Wikipedia

    en.wikipedia.org/wiki/Triakis_icosahedron

    Alternatively, for the same form of the triakis icosahedron, the triples of coplanar isosceles triangles form the faces of the first stellation of the icosahedron. [6] Yet another non-convex form, with golden isosceles triangle faces, forms the outer shell of the great stellated dodecahedron, a Kepler–Poinsot polyhedron with twelve pentagram ...