Search results
Results From The WOW.Com Content Network
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
G-banding, G banding or Giemsa banding is a technique used in cytogenetics to produce a visible karyotype by staining condensed chromosomes. It is the most common chromosome banding method. [1] It is useful for identifying genetic diseases (mainly chromosomal abnormalities) through the photographic representation of the entire chromosome ...
One utility of this approach is that it allows one to obtain values for distances in genetic mapping units directly from recombination fractions, as map distances cannot typically be obtained from empirical experiments. [1] The simplest mapping function is the Morgan Mapping Function, eponymously devised by Thomas Hunt Morgan.
In molecular biology, genome architecture mapping (GAM) is a cryosectioning method to map colocalized DNA regions in a ligation independent manner. [ 1 ] [ 2 ] It overcomes some limitations of Chromosome conformation capture (3C), as these methods have a reliance on digestion and ligation to capture interacting DNA segments. [ 3 ]
Chromosomes display a banded pattern when treated with some stains. Bands are alternating light and dark stripes that appear along the lengths of chromosomes. Unique banding patterns are used to identify chromosomes and to diagnose chromosomal aberrations, including chromosome breakage, loss, duplication, translocation or inverted segments.
A genome map is less detailed than a genome sequence and aids in navigating around the genome. [75] [76] An example of a variation map is the HapMap being developed by the International HapMap Project. The HapMap is a haplotype map of the human genome, "which will describe the common patterns of human DNA sequence variation."
In genetics, a locus (pl.: loci) is a specific, fixed position on a chromosome where a particular gene or genetic marker is located. [1] Each chromosome carries many genes, with each gene occupying a different position or locus; in humans, the total number of protein-coding genes in a complete haploid set of 23 chromosomes is estimated at ...
In human genetics, a human Y-chromosome DNA haplogroup is a haplogroup defined by specific mutations in the non-recombining portions of DNA on the male-specific Y chromosome (Y-DNA). Individuals within a haplogroup share similar numbers of short tandem repeats (STRs) and single-nucleotide polymorphisms (SNPs). [ 2 ]