Search results
Results From The WOW.Com Content Network
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
The A* algorithm has real-world applications. In this example, edges are railroads and h(x) is the great-circle distance (the shortest possible distance on a sphere) to the target. The algorithm is searching for a path between Washington, D.C., and Los Angeles.
Most algorithms are implemented on particular hardware/software platforms and their algorithmic efficiency is tested using real code. The efficiency of a particular algorithm may be insignificant for many "one-off" problems but it may be critical for algorithms designed for fast interactive, commercial or long life scientific usage.
Mashable’s series Algorithms explores the mysterious lines of code that increasingly control our lives — and our futures. Blame the algorithm. Algorithms are behind many mundane, but still ...
Learning robot behavior using genetic algorithms; Image processing: Dense pixel matching [16] Learning fuzzy rule base using genetic algorithms; Molecular structure optimization (chemistry) Optimisation of data compression systems, for example using wavelets. Power electronics design. [17] Traveling salesman problem and its applications [14]
Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide-and-conquer algorithms, data structures such as heaps and binary trees, randomized algorithms, best, worst and average ...
The following is an example of a generic evolutionary algorithm: [6] [7] [8] Generate the initial population of individuals, the first generation, randomly. Evaluate the fitness of each individual in the population. Check, if the goal is reached and the algorithm can be terminated. Select individuals as parents, preferably of higher fitness.
Another example of heuristic making an algorithm faster occurs in certain search problems. Initially, the heuristic tries every possibility at each step, like the full-space search algorithm. But it can stop the search at any time if the current possibility is already worse than the best solution already found.