Search results
Results From The WOW.Com Content Network
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
An example of such an antibacterial is rifampicin, which inhibits bacterial transcription of DNA into mRNA by inhibiting DNA-dependent RNA polymerase by binding its beta-subunit, while 8-hydroxyquinoline is an antifungal transcription inhibitor. [55] The effects of histone methylation may also work to inhibit the action of transcription. Potent ...
DNA gene is transcribed to pre-mRNA, which is then processed to form a mature mRNA, and then lastly translated by a ribosome to a protein. Processing of mRNA differs greatly among eukaryotes, bacteria, and archaea. Non-eukaryotic mRNA is, in essence, mature upon transcription and requires no processing, except in rare cases. [4]
Micrograph of gene transcription of ribosomal RNA illustrating the growing primary transcripts. A primary transcript is the single-stranded ribonucleic acid product synthesized by transcription of DNA, and processed to yield various mature RNA products such as mRNAs, tRNAs, and rRNAs.
Bacterial transcription is governed by three main sequence elements: Promoters are elements of DNA that may bind RNA polymerase and other proteins for the successful initiation of transcription directly upstream of the gene. Operators recognize repressor proteins that bind to a stretch of DNA and inhibit the transcription of the gene.
Gene structure is the organisation of specialised sequence elements within a gene. Genes contain most of the information necessary for living cells to survive and reproduce. [ 1 ] [ 2 ] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene.
Abortive initiation is a normal process of transcription and occurs both in vitro and in vivo. [2] After each nucleotide-addition step in initial transcription, RNA polymerase, stochastically, can proceed on the pathway toward promoter escape (productive initiation) or can release the RNA product and revert to the RNA polymerase-promoter open complex (abortive initiation).
Each strand of DNA or RNA has a 5' end and a 3' end, so named for the carbon position on the deoxyribose (or ribose) ring. By convention, upstream and downstream relate to the 5' to 3' direction respectively in which RNA transcription takes place. [1] Upstream is toward the 5' end of the RNA molecule, and downstream is toward the 3' end.