When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quasiconvex function - Wikipedia

    en.wikipedia.org/wiki/Quasiconvex_function

    Univariate unimodal functions are quasiconvex or quasiconcave, however this is not necessarily the case for functions with multiple arguments. For example, the 2-dimensional Rosenbrock function is unimodal but not quasiconvex and functions with star-convex sublevel sets can be unimodal without being quasiconvex.

  3. Quasiconvexity (calculus of variations) - Wikipedia

    en.wikipedia.org/wiki/Quasiconvexity_(calculus...

    Quasiconvexity is a generalisation of convexity for functions defined on matrices, to see this let and ((,),) with (,) =.The Riesz-Markov-Kakutani representation theorem states that the dual space of () can be identified with the space of signed, finite Radon measures on it.

  4. Convex optimization - Wikipedia

    en.wikipedia.org/wiki/Convex_optimization

    Extensions of convex optimization include the optimization of biconvex, pseudo-convex, and quasiconvex functions. Extensions of the theory of convex analysis and iterative methods for approximately solving non-convex minimization problems occur in the field of generalized convexity , also known as abstract convex analysis.

  5. Concavification - Wikipedia

    en.wikipedia.org/wiki/Concavification

    An important special case of concavification is where the original function is a quasiconcave function. It is known that: Every concave function is quasiconcave, but the opposite is not true. Every monotone transformation of a quasiconcave function is also quasiconcave.

  6. Pseudoconvex function - Wikipedia

    en.wikipedia.org/wiki/Pseudoconvex_function

    Every convex function is pseudoconvex, but the converse is not true. For example, the function () = + is pseudoconvex but not convex. Similarly, any pseudoconvex function is quasiconvex; but the converse is not true, since the function () = is quasiconvex but not pseudoconvex. This can be summarized schematically as:

  7. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold. An example is the Gaussian function f(x) = exp(−x 2 /2) which is log-concave since log f(x) = −x 2 /2 is a concave function of x. But f is not concave since the second derivative is positive for | x | > 1:

  8. Linear-fractional programming - Wikipedia

    en.wikipedia.org/wiki/Linear-fractional_programming

    The objective function in a linear-fractional problem is both quasiconcave and quasiconvex (hence quasilinear) with a monotone property, pseudoconvexity, which is a stronger property than quasiconvexity. A linear-fractional objective function is both pseudoconvex and pseudoconcave, hence pseudolinear.

  9. Level set - Wikipedia

    en.wikipedia.org/wiki/Level_set

    Theorem: If the function f is differentiable, the gradient of f at a point is either zero, or perpendicular to the level set of f at that point. To understand what this means, imagine that two hikers are at the same location on a mountain. One of them is bold, and decides to go in the direction where the slope is steepest.