When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    Conversely, if closed sets are given and every intersection of closed sets is closed, then one can define a closure operator C such that () is the intersection of the closed sets containing X. This equivalence remains true for partially ordered sets with the greatest-lower-bound property , if one replace "closed sets" by "closed elements" and ...

  3. Open and closed maps - Wikipedia

    en.wikipedia.org/wiki/Open_and_closed_maps

    In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. [1] [2] [3] That is, a function : is open if for any open set in , the image is open in . Likewise, a closed map is a function that maps closed sets to closed sets.

  4. Closure operator - Wikipedia

    en.wikipedia.org/wiki/Closure_operator

    Convex hull (red) of a polygon (yellow). The usual set closure from topology is a closure operator. Other examples include the linear span of a subset of a vector space, the convex hull or affine hull of a subset of a vector space or the lower semicontinuous hull ¯ of a function : {}, where is e.g. a normed space, defined implicitly ⁡ (¯) = ⁡ ¯, where ⁡ is the epigraph of a function .

  5. Closed-form expression - Wikipedia

    en.wikipedia.org/wiki/Closed-form_expression

    The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).

  6. Closure (topology) - Wikipedia

    en.wikipedia.org/wiki/Closure_(topology)

    The definition of a point of closure of a set is closely related to the definition of a limit point of a set.The difference between the two definitions is subtle but important – namely, in the definition of a limit point of a set , every neighbourhood of must contain a point of other than itself, i.e., each neighbourhood of obviously has but it also must have a point of that is not equal to ...

  7. Closed set - Wikipedia

    en.wikipedia.org/wiki/Closed_set

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. [1] [2] In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation.

  8. Closed convex function - Wikipedia

    en.wikipedia.org/wiki/Closed_convex_function

    A closed proper convex function f is the pointwise supremum of the collection of all affine functions h such that h ≤ f (called the affine minorants of f). References [ edit ]

  9. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    set-valued function with a closed graph. If F : X → 2 Y is a set-valued function between topological spaces X and Y then the following are equivalent: F has a closed graph (in X × Y); (definition) the graph of F is a closed subset of X × Y; and if Y is compact and Hausdorff then we may add to this list: