Search results
Results From The WOW.Com Content Network
The 4n decay chain of 232 Th, commonly called the "thorium series" Thorium-232 has a half-life of 14 billion years and mainly decays by alpha decay to radium-228 with a decay energy of 4.0816 MeV. [3] The decay chain follows the thorium series, which terminates at stable lead-208. The intermediates in the thorium-232 decay chain are all ...
For example, uranium-238 decays to form thorium-234. While alpha particles have a charge +2 e, this is not usually shown because a nuclear equation describes a nuclear reaction without considering the electrons – a convention that does not imply that the nuclei necessarily occur in neutral atoms.
Uranium-232 (232 U) is an isotope of uranium.It has a half-life of around 69 years and is a side product in the thorium cycle.It has been cited as an obstacle to nuclear proliferation using 233 U as the fissile material, because the intense gamma radiation emitted by 208 Tl (a daughter of 232 U, produced relatively quickly) makes the 233 U contaminated with it more difficult to handle.
For example element 92, uranium, has an isotope with 144 neutrons (236 U) and it decays into an isotope of element 90, thorium, with 142 neutrons (232 Th). The daughter isotope may be stable or it may itself decay to form another daughter isotope. 232 Th does this when it decays into radium-228.
The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E . If A is the radioactive activity , i.e. the number of transforming atoms per time, M the molar mass, then the radiation power P is:
A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0 × 10 8 and 4.83 × 10 11 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6 × 10 9 years ...
Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties. It is the chemistry of radioactive elements such as the actinides , radium and radon together with the chemistry associated with equipment (such as ...
In these, the neutrons released in the fission of plutonium are captured by thorium-232. After this radiative capture, thorium-232 becomes thorium-233, which undergoes two beta minus decays resulting in the production of the fissile isotope uranium-233. The radiative capture cross section for thorium-232 is more than three times that of uranium ...