Search results
Results From The WOW.Com Content Network
Convenience sampling can be used by almost anyone and has been around for generations. One of the reasons that it is most often used is due to the numerous advantages it provides. This method is extremely speedy, easy, readily available, and cost-effective, causing it to be an attractive option to most researchers.
Judgment sampling or purposive sampling, where the researcher chooses the sample based on who they think would be appropriate for the study. This is used primarily when there is a limited number of people that have expertise in the area being researched, or when the interest of the research is on a specific field or a small group.
Nonprobability sampling methods include convenience sampling, quota sampling, and purposive sampling. In addition, nonresponse effects may turn any probability design into a nonprobability design if the characteristics of nonresponse are not well understood, since nonresponse effectively modifies each element's probability of being sampled.
Sampling methods may be either random (random sampling, systematic sampling, stratified sampling, cluster sampling) or non-random/nonprobability (convenience sampling, purposive sampling, snowball sampling). [3] The most common reason for sampling is to obtain information about a population.
In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power. In complex studies, different sample sizes may be allocated, such as in stratified surveys or experimental designs with multiple treatment groups.
Along with convenience sampling and snowball sampling, consecutive sampling is one of the most commonly used kinds of nonprobability sampling. [3] Consecutive sampling is typically better than convenience sampling in controlling sampling bias. [4]
In statistics and econometrics, cross-sectional data is a type of data collected by observing many subjects (such as individuals, firms, countries, or regions) at a single point or period of time.
In statistics, multistage sampling is the taking of samples in stages using smaller and smaller sampling units at each stage. [1] Multistage sampling can be a complex form of cluster sampling because it is a type of sampling which involves dividing the population into groups (or clusters). Then, one or more clusters are chosen at random and ...