Search results
Results From The WOW.Com Content Network
A transcritical cycle is a closed thermodynamic cycle where the working fluid goes through both subcritical and supercritical states. In particular, for power cycles the working fluid is kept in the liquid region during the compression phase and in vapour and/or supercritical conditions during the expansion phase.
A supercritical flow is a flow whose velocity is larger than the wave velocity. [clarification needed] The analogous condition in gas dynamics is supersonic speed.According to the website Civil Engineering Terms, supercritical flow is defined as follows: The flow at which depth of the channel is less than critical depth, velocity of flow is greater than critical velocity and slope of the ...
However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the critical point. The critical point of water occurs at 647.096 K (373.946 °C; 705.103 °F) and 22.064 megapascals (3,200.1 psi; 217.75 atm; 220.64 bar). [3]
Typically, supercritical fluids are completely miscible with each other, so that a binary mixture forms a single gaseous phase if the critical point of the mixture is exceeded. However, exceptions are known in systems where one component is much more volatile than the other, which in some cases form two immiscible gas phases at high pressure ...
Note that subcritical and supercritical describe the stability of the outer lines of the pitchfork (dashed or solid, respectively) and are not dependent on which direction the pitchfork faces. For example, the negative of the first ODE above, x ˙ = x 3 − r x {\displaystyle {\dot {x}}=x^{3}-rx} , faces the same direction as the first picture ...
Using careful control rod movements, it is thus possible to achieve a supercritical reactor core without reaching an unsafe prompt-critical state. Once a reactor plant is operating at its target or design power level, it can be operated to maintain its critical condition for long periods of time.
This fundamental law determines the different adsorption mechanism for the subcritical and supercritical regions. For the subcritical region, the highest equilibrium pressure of adsorption is the saturation pressure of adsorbate. Beyond condensation happens. Adsorbate in the adsorbed phase is largely in liquid state, based on which different ...
As water hits the sink, it disperses, increasing in depth to a critical radius where the flow (supercritical with low depth, high velocity, and a Froude number greater than 1) must suddenly jump to a greater, subcritical depth (high depth, low velocity, and a Froude number less than 1) that is known to conserve momentum. Figure 2.