Search results
Results From The WOW.Com Content Network
A fuel cell system running on hydrogen can be compact and lightweight, and have no major moving parts. Because fuel cells have no moving parts and do not involve combustion, in ideal conditions they can achieve up to 99.9999% reliability. [80] This equates to less than one minute of downtime in a six-year period. [80]
English: Department of Energy's Energy Efficiency and Renewable Energy Fuel Cell Technologies Program Fuel cell comparison chart. This shows a summary of the different types of fuel cells. Materials on the EERE Web site are in the public domain.
This freezing water can block gas and fuel transport as well as cover catalyst reaction sites, resulting in a loss of output power and a start-up failure of the fuel cell. However, the low operating temperature of a PEM fuel cell allows it to reach a suitable temperature with less heating compared to other types of fuel cells.
Fuel Cell Diagram. Note: Electrolyte can be a polymer or solid oxide. A fuel cell consists of an electrolyte which is placed in between two electrodes – the cathode and the anode. In the simplest case, hydrogen gas passes over the cathode, where it is decomposed into hydrogen protons and electrons.
Scheme of a molten-carbonate fuel cell. Molten-carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate at temperatures of 600 °C and above.. Molten carbonate fuel cells (MCFCs) were developed for natural gas, biogas (produced as a result of anaerobic digestion or biomass gasification), and coal-based power plants for electrical utility, industrial, and military applications.
Block diagram of a fuel cell. Source I (Paulsmith99 ) created this work entirely by myself, based on the original png version. Date 17:35, 25 June 2010 (UTC) Author Paulsmith99 Permission (Reusing this file) See below. Other versions Fuel Cell Block Diagram.png
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
The planar fuel cell design geometry is the typical sandwich type geometry employed by most types of fuel cells, where the electrolyte is sandwiched in between the electrodes. SOFCs can also be made in tubular geometries where either air or fuel is passed through the inside of the tube and the other gas is passed along the outside of the tube.