When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosystem II (or water-plastoquinone oxidoreductase) is the first protein complex in the energy-dependent reactions of oxygenic photosynthesis. It is located in the thylakoid membrane of plants , algae , and cyanobacteria .

  3. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

  4. Plastoquinone - Wikipedia

    en.wikipedia.org/wiki/Plastoquinone

    The role that plastoquinone plays in photosynthesis, more specifically in the light-dependent reactions of photosynthesis, is that of a mobile electron carrier through the membrane of the thylakoid. [2] Plastoquinone is reduced when it accepts two electrons from photosystem II and two hydrogen cations (H +) from the stroma of the chloroplast ...

  5. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    The water-splitting reaction occurs on the lumenal side of the thylakoid membrane and is driven by the light energy captured by the photosystems. This oxidation of water conveniently produces the waste product O 2 that is vital for cellular respiration .

  6. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    This funneling of energy is performed via resonance transfer, which occurs when energy from an excited molecule is transferred to a molecule in the ground state. This ground state molecule will be excited, and the process will continue between molecules all the way to the reaction center.

  7. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    The electrons then pass through Cyt b 6 and Cyt f to plastocyanin, using energy from photosystem I to pump hydrogen ions (H +) into the thylakoid space. This creates a H + gradient, making H + ions flow back into the stroma of the chloroplast, providing the energy for the (re)generation of ATP.

  8. Cytochrome b6f complex - Wikipedia

    en.wikipedia.org/wiki/Cytochrome_b6f_complex

    The cytochrome b 6 f complex is a dimer, with each monomer composed of eight subunits. [3] These consist of four large subunits: a 32 kDa cytochrome f with a c-type cytochrome, a 25 kDa cytochrome b 6 with a low- and high-potential heme group, a 19 kDa Rieske iron-sulfur protein containing a [2Fe-2S] cluster, and a 17 kDa subunit IV; along with four small subunits (3-4 kDa): PetG, PetL, PetM ...

  9. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Photosystem I [1] is an integral membrane protein complex that uses light energy to catalyze the transfer of electrons across the thylakoid membrane from plastocyanin to ferredoxin. Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2]