Ad
related to: natural gas calculation chart for propane
Search results
Results From The WOW.Com Content Network
The Wobbe index is expressed in MJ/Nm³ (where 'Nm³' indicates'm³ in Normal conditions), or sometimes in BTU/scf.In the case of natural gas (molar mass 17 g/mol), the typical heating value is around 39 MJ/Nm³ (1,050 BTU/scf) and the specific gravity is approximately 0.59, giving a typical Wobbe index of 51 MJ/Nm³ (1,367 BTU/scf).
In the United States, the hydrocarbon dew point of processed, pipelined natural gas is related to and characterized by the term GPM which is the gallons of liquefiable hydrocarbons contained in 1,000 cubic feet (28 m 3) of natural gas at a stated temperature and pressure.
In gas dynamics we are interested in the local relations between pressure, density and temperature, rather than considering a fixed quantity of gas. By considering the density ρ = M / V {\displaystyle \rho =M/V} as the inverse of the volume for a unit mass, we can take ρ = 1 / V {\displaystyle \rho =1/V} in these relations.
Assuming initial atmospheric conditions (1 bar and 20 °C), the following table [1] lists the flame temperature for various fuels under constant pressure conditions. The temperatures mentioned here are for a stoichiometric fuel-oxidizer mixture (i.e. equivalence ratio φ = 1).
Compressibility factor values are usually obtained by calculation from equations of state (EOS), such as the virial equation which take compound-specific empirical constants as input. For a gas that is a mixture of two or more pure gases (air or natural gas, for example), the gas composition must be known before compressibility can be calculated.
Yet other definitions are in use for industrial gas, [5] where, in the US, a standard cubic foot for industrial gas use is defined at 70 °F (21.1 °C) and 14.696 psia (101.325 kPa), while in Canada, a standard cubic meter for industrial gas use is defined at 15 °C (59 °F) and 101.325 kPa (14.696 psia).
The ideal gas law is used for these calculations. Often, but not always, the standard temperature and pressure (STP) are taken as 0 °C and 1 bar and used as the conditions for gas stoichiometric calculations. Gas stoichiometry calculations solve for the unknown volume or mass of a gaseous product or reactant.
[10] since there is typically a 10% difference between the two methods for a power plant burning natural gas. For simply benchmarking part of a reaction the LHV may be appropriate, but HHV should be used for overall energy efficiency calculations if only to avoid confusion, and in any case, the value or convention should be clearly stated.