Search results
Results From The WOW.Com Content Network
A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.
A relation that is reflexive, symmetric, and transitive. It is also a relation that is symmetric, transitive, and serial, since these properties imply reflexivity. Orderings: Partial order A relation that is reflexive, antisymmetric, and transitive. Strict partial order A relation that is irreflexive, asymmetric, and transitive. Total order
An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.
A symmetric relation is a type of binary relation. Formally, a binary relation R over a set X is symmetric if: [1], (), where the notation aRb means that (a, b) ∈ R. An example is the relation "is equal to", because if a = b is true then b = a is also true.
A reflexive, weak, [1] or non-strict partial order, [2] commonly referred to simply as a partial order, is a homogeneous relation ≤ on a set that is reflexive, antisymmetric, and transitive. That is, for all a , b , c ∈ P , {\displaystyle a,b,c\in P,} it must satisfy:
For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...
A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.
A preorder is a relation that is reflective and transitive. It follows that the reflexive transitive closure of a relation is the smallest preorder containing it. Similarly, the reflexive transitive symmetric closure or equivalence closure of a relation is the smallest equivalence relation that contains it.