Search results
Results From The WOW.Com Content Network
For example, since the surface is time-independent, we can bring the differentiation under the integral sign in Faraday's law: =, Maxwell's equations can be formulated with possibly time-dependent surfaces and volumes by using the differential version and using Gauss' and Stokes' theorems as appropriate.
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
The maxwell is a non-SI unit. [8] 1 maxwell = 1 gauss × 2. That is, one maxwell is the total flux across a surface of one square centimetre perpendicular to a magnetic field of strength one gauss. The weber is the related SI unit of magnetic flux, which was defined in 1946. [9] 1 maxwell ≘ 10 −4 tesla × (10 −2 metre) 2 = 10 −8 weber
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
In particular, in abstract index notation, the set of Maxwell's equations (in the Lorenz gauge) may be written (in Gaussian units) as follows: = = where is the d'Alembertian and is the four-current. The first equation is the Lorenz gauge condition while the second contains Maxwell's equations.
This tensor simplifies and reduces Maxwell's equations as four vector calculus equations into two tensor field equations. In electrostatics and electrodynamics, Gauss's law and Ampère's circuital law are respectively:
All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...