Search results
Results From The WOW.Com Content Network
A primary architect of the Intel 80x87 floating-point coprocessor and IEEE 754 floating-point standard. It is a common misconception that the more esoteric features of the IEEE 754 standard discussed here, such as extended formats, NaN, infinities, subnormals etc., are only of interest to numerical analysts, or for advanced numerical ...
Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language designers. E.g., GW-BASIC's single-precision data type was the 32-bit MBF floating-point format.
[citation needed] Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language implementers. E.g., GW-BASIC's double-precision data type was the 64-bit MBF floating-point format.
The octuple-precision binary floating-point exponent is encoded using an offset binary representation, with the zero offset being 262143; also known as exponent bias in the IEEE 754 standard. E min = −262142
Swift introduced half-precision floating point numbers in Swift 5.3 with the Float16 type. [20] OpenCL also supports half-precision floating point numbers with the half datatype on IEEE 754-2008 half-precision storage format. [21] As of 2024, Rust is currently working on adding a new f16 type for IEEE half-precision 16-bit floats. [22]
IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2] During its 23 years, it was the most widely used format for floating-point computation.
The IEEE 754-2008 standard defines 32-, 64- and 128-bit decimal floating-point representations. Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand.
The new IEEE 754 (formally IEEE Std 754-2008, the IEEE Standard for Floating-Point Arithmetic) was published by the IEEE Computer Society on 29 August 2008, and is available from the IEEE Xplore website [4] This standard replaces IEEE 754-1985. IEEE 854, the Radix-Independent floating-point standard was withdrawn in December 2008.