Ad
related to: describe bonding in a metal
Search results
Results From The WOW.Com Content Network
The strong bonding of metals in liquid form demonstrates that the energy of a metallic bond is not highly dependent on the direction of the bond; this lack of bond directionality is a direct consequence of electron delocalization, and is best understood in contrast to the directional bonding of covalent bonds.
In inorganic chemistry, metal–metal bonds describe attractive interactions between metal centers. The simplest examples are found in bimetallic complexes. Metal–metal bonds can be "supported", i.e. be accompanied by one or more bridging ligands, or "unsupported". They can also vary according to bond order.
Covalent bonding corresponds to sharing of a pair of electrons between two atoms of essentially equal electronegativity (for example, C–C and C–H bonds in aliphatic hydrocarbons). As bonds become more polar, they become increasingly ionic in character. Metal oxides vary along the iono-covalent spectrum. [4]
The bond results because the metal atoms become somewhat positively charged due to loss of their electrons while the electrons remain attracted to many atoms, without being part of any given atom. Metallic bonding may be seen as an extreme example of delocalization of electrons over a large system of covalent bonds, in which every atom ...
Some ligands can bond to a metal center through the same atom but with a different number of lone pairs. The bond order of the metal ligand bond can be in part distinguished through the metal ligand bond angle (M−X−R). This bond angle is often referred to as being linear or bent with further discussion concerning the degree to which the ...
The only metal having an ionisation energy higher than some nonmetals (sulfur and selenium) is mercury. [citation needed] Mercury and its compounds have a reputation for toxicity but on a scale of 1 to 10, dimethylmercury ((CH 3) 2 Hg) (abbr. DMM), a volatile colourless liquid, has been described as a 15. It is so dangerous that scientists have ...
In coordination chemistry, a coordinate covalent bond, [1] also known as a dative bond, [2] dipolar bond, [1] or coordinate bond [3] is a kind of two-center, two-electron covalent bond in which the two electrons derive from the same atom. The bonding of metal ions to ligands involves this kind of interaction. [4]
The other form of coordination π bonding is ligand-to-metal bonding. This situation arises when the π-symmetry p or π orbitals on the ligands are filled. They combine with the d xy, d xz and d yz orbitals on the metal and donate electrons to the resulting π-symmetry bonding orbital between them and the metal. The metal-ligand bond is ...