Search results
Results From The WOW.Com Content Network
In computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine [1] [2] (devised by English mathematician and computer scientist Alan Turing).
Turing is a high-level, general purpose programming language developed in 1982 by Ric Holt and James Cordy, at University of Toronto in Ontario, Canada. It was designed to help students taking their first computer science course learn how to code.
Turing completeness is the ability for a computational model or a system of instructions to simulate a Turing machine. A programming language that is Turing complete is theoretically capable of expressing all tasks accomplishable by computers; nearly all programming languages are Turing complete if the limitations of finite memory are ignored.
Among the 88 possible unique elementary cellular automata, Rule 110 is the only one for which Turing completeness has been directly proven, although proofs for several similar rules follow as simple corollaries (e.g. Rule 124, which is the horizontal reflection of Rule 110). Rule 110 is arguably the simplest known Turing complete system. [2] [5]
For these reasons, a universal Turing machine serves as a standard against which to compare computational systems, and a system that can simulate a universal Turing machine is called Turing complete. An abstract version of the universal Turing machine is the universal function , a computable function which can be used to calculate any other ...
The language has been used for theorem proving, [6] expert systems, [7] term rewriting, [8] type systems, [9] and automated planning, [10] as well as its original intended field of use, natural language processing. [11] [12] Prolog is a Turing-complete, general-purpose programming language, which is well-suited for intelligent knowledge ...
For more than 70 years, the Turing Test has been a popular benchmark for analyzing the intelligence of computers. But experts say it's far beyond obsolete.
Arithmetic-based Turing-complete machines use an arithmetic operation and a conditional jump. Like the two previous universal computers, this class is also Turing-complete. The instruction operates on integers which may also be addresses in memory. Currently there are several known OISCs of this class, based on different arithmetic operations: