Search results
Results From The WOW.Com Content Network
The kinetic energy of a moving object is equal to the work required to bring it from rest to that speed, or the work the object can do while being brought to rest: net force × displacement = kinetic energy, i.e.,
In modern terminology, "dead force" and "living force" correspond to potential energy and kinetic energy respectively. [134] Conservation of energy was not established as a universal principle until it was understood that the energy of mechanical work can be dissipated into heat.
In physics and engineering, kinetics is the branch of classical mechanics that is concerned with the relationship between the motion and its causes, specifically, forces and torques.
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
In a mechanical system like a swinging pendulum subjected to the conservative gravitational force where frictional forces like air drag and friction at the pivot are negligible, energy passes back and forth between kinetic and potential energy but never leaves the system. The pendulum reaches greatest kinetic energy and least potential energy ...
During the collision of small objects, kinetic energy is first converted to potential energy associated with a repulsive or attractive force between the particles (when the particles move against this force, i.e. the angle between the force and the relative velocity is obtuse), then this potential energy is converted back to kinetic energy ...
It is the mechanical work done by the gravitational force to bring the mass from a chosen reference point (often an "infinite distance" from the mass generating the field) to some other point in the field, which is equal to the change in the kinetic energies of the objects as they fall towards each other. Gravitational potential energy ...